Skip to main content

The sun shines on India's Aditya

India's solar mission will study the Sun's outermost layers — the corona and the chromosphere — and collect data about coronal mass ejection

After a seven year long wait, Aditya, India’s first dedicated scientific mission to study the sun is likely to get a go-ahead from the Prime Minister’s Office (PMO) this week. The ambitious solar mission will study the sun’s outer most layers, the corona and the chromosphere, collect data about coronal mass ejection and more, which will also yield information for space weather prediction.
The project costs approximately Rs 400 crores and is a joint venture between ISRO and physicists from Indian Institute of Astrophysics, Bengaluru; Inter University Centre for Astronomy and Astrophysics, Pune; Tata Institute of Fundamental Research, Mumbai, and other institutes.
Shubashree Desikan
Though the project was conceptualised in 2008 itself, it has since morphed and grown and is now awaiting clearance with the government. It now aims to put a heavy satellite into what is called a halo orbit around the L1 point between the Sun and the Earth. This point is at a distance of about 1.5 million km from the earth. With the excitement about the Mars Orbiter Mission yet to settle down, this could be the next most complicated feat that ISRO has carried out till date.
In a three-body problem such as this – with the earth and sun engaged in an elliptical orbit and a relatively very light, call it massless in comparison, satellite being placed in between – there are five so-called lagrangian points in space where the light, third body — in our case, the satellite — may be placed so that it can maintain its position with respect to the two others. One of these is the L1 point, which is about 1.5 million km from the earth.
A halo orbit would be a circular orbit around the L1 point. The satellite will have to use its own power (spend energy) to remain in position within in this orbit without losing its way. Such orbits have not been attempted too often.
Studying the corona
Among the suite of instruments in the payload would be a solar coronagraph. “A combination of imaging and spectroscopy in multi-wavelength will enhance our understanding of the solar atmosphere. It will provide high time cadence sharp images of the solar chromosphere and the corona in the emission lines. These images will be used to study the highly dynamic nature of the solar corona including the small-scale coronal loops and large-scale Coronal Mass Ejections,” said Dipankar Banerjee, physicist from IIA, who is part of this project. The corona is the outermost layer of the Sun and the chromosphere is the second inner layer. Data such as this can help us understand the corona and solar wind, which is a spewing of charged particles into space, at speeds as high as 900 km/s and at about 1 million degrees Celsius temperature, affecting the environment there.
Just like on earth, environment in space changes due to happenings in the sun, such as solar storms (flares). This is known as space weather. Dibyendu Nandi, Head of Center of Excellence in Space Sciences, IISER, Kolkata, describes it so: “Solar storms and space weather affect satellite operations. They may interfere with electronic circuitry of satellites and also, through enhanced drag (friction effects), impact satellite mission lifetimes. They also impact the positional accuracy of satellites and thus impact GPS navigational networks. Space weather also impacts telecommunications, satellite TV broadcasts which are dependent on satellite-based transmission.”
Dr Nandi works in building models that can predict space weather. Hopeful about Aditya’s contribution to this, he remarks “The data from Aditya mission will be immensely helpful in discriminating between different models for the origin of solar storms and also for constraining how the storms evolve and what path they take through the interplanetary space from the Sun to the Earth. The forecasting models we are building will therefore be complemented by the Aditya observations.”
At the moment, there are models and calculations made by NASA which Indian scientists use to maintain their satellites. Now, there is a possibility of Indians developing their own space weather prediction models.
shubashree.desikan@thehindu.co.in

Comments

Popular posts from this blog

NGT terminates chairmen of pollution control boards in 10 states (downtoearth,)

Cracking the whip on 10 State Pollution Control Boards (SPCBs) for ad-hoc appointments, the National Green Tribunal has ordered the termination of Chairpersons of these regulatory authorities. The concerned states are Himachal Pradesh, Sikkim, Tamil Nadu, Uttarakhand, Kerala, Rajasthan, Telangana, Haryana, Maharashtra and Manipur. The order was given last week by the principal bench of the NGT, chaired by Justice Swatanter Kumar. The recent order of June 8, 2017, comes as a follow-up to an NGT judgment given in August 2016. In that judgment, the NGT had issued directions on appointments of Chairmen and Member Secretaries of the SPCBs, emphasising on crucial roles they have in pollution control and abatement. It then specified required qualifications as well as tenure of the authorities. States were required to act on the orders within three months and frame Rules for appointment [See Box: Highlights of the NGT judgment of 2016 on criteria for SPCB chairperson appointment]. Having ...

High dose of Vitamin C and B3 can kill colon cancer cells: study (downtoearth)

In a first, a team of researchers has found that high doses of Vitamin C and niacin or Vitamin B3 can kill cancer stem cells. A study published in Cell Biology International showed the opposing effects of low and high dose of vitamin C and vitamin B3 on colon cancer stem cells. Led by Bipasha Bose and Sudheer Shenoy, the team found that while low doses (5-25 micromolar) of Vitamin C and B3 proliferate colon cancer stem cells, high doses (100 to 1,000 micromolar) killed cancer stem cells. Such high doses of vitamins can only be achieved through intravenous injections in colon cancer patients. The third leading cause of cancer deaths worldwide, colon cancer can be prevented by an intake of dietary fibre and lifestyle changes. While the next step of the researchers is to delineate the mechanisms involved in such opposing effects, they also hope to establish a therapeutic dose of Vitamin C and B3 for colon cancer stem cell therapy. “If the therapeutic dose gets validated under in vivo...

What's ailing Namami Gange programme?(DTE)

Winters are extremely hectic for Sushma Patel, a vegetable grower in Uttar Pradesh’s Chunar town. Her farm is in the fertile plains of Ganga where people grow three crops a year. But this is the only season when she can grow vegetables. And before that, she needs to manually dig out shreds of plastic and wrappers from her one-hectare (ha) farm. “This is all because of the nullah,” she says, pointing at an open drain that runs through her field, carrying sewage from the neighbourhood to the Ganga. “Every monsoon, the drain overflows and inundates the field with a thick, black sludge and plastic debris. We cannot even go near the field as the stench of sewage fills the air,” she says. But Patel has no one to complain to as this is the way of life for most people in this ancient town. About 70 per cent of the people in Chunar depend on toilets that have on-site sanitation, such as septic tanks and pits. In the absence of a proper disposal or management system, people simply dump the faec...