Skip to main content

IIT-M makes white light from pomegranate, turmeric extracts (hindu)

This could be used in applications such as tunable laser, LEDs and white light display

Dr. Vikram Singh, former research scholar in the Department of Chemistry, IIT Madras won the BIRAC Gandhian Young Technological Innovation (GYTI) Award 2017 for his work on producing white light emission using natural extracts.

Dr. Singh and Prof. Ashok Mishra from the Department of Chemistry, IIT Madras used a mixture of two natural extracts — red pomegranate and turmeric — to produce white light emission. The researchers used a simple and environment-friendly procedure to extract dyes from pomegranate and turmeric.

While polyphenols and anthocyanins present in red pomegranate emit at blue and orange-red regions of the wavelength respectively, curcumin from turmeric emit at the green region of the wavelength. White light emission is produced when red, blue and green mix together. This is probably the first time white light emission has been generated using low-cost, edible natural dyes. The results were published in the journal Scientific Reports.

“We had to mix the two extracts in a particular ratio to get white light,” says Dr. Singh, the first author of the paper; he is currently at Lucknow’s CSIR-Central Drug Research Institute (CDRI). By changing the concentration of the two extracts the researchers were able to get different colour temperature (tunability).

“When we mix the two extracts and irradiate it with UV radiation at 380 nm, we observed energy transfer (FRET mechanism) taking place from polyphenols to curcumin to anthocyanins, which helps to get perfect white light emission,” says Dr. Singh. For FRET mechanism to take place there must be spectral overlap between the donor and acceptor.

Energy transfer

In this case, there is a perfect overlap of emission of polyphenols with absorption by curcumin so the energy from polyphenols is transferred to curcumin. Since there is also a perfect overlap of emission of curcumin with absorption by anthocyanin, the energy of curcumin is transferred to anthocyanin.

As a result of this energy transfer from one dye to the other, when the extract is irradiated with UV light at 380 nm (blue region of the wavelength), the polyphenols emit in the blue region of the wavelength and transfers its energy to curcumin. The excited curcumin emits in the green region of the wavelength and transfers its energy to anthocyanin, which emits light in the red region of the wavelength.

“Because of the energy transfer, even if you excite in the blue wavelength we were able to get appropriate intensity distribution across the visual wavelength,” says Prof. Mishra, who is the corresponding author of the paper.

Without turmeric

Taking the work further, the duo produced carbon nanoparticles using pomegranate and to their surprise it was producing fairly green emission. So instead of using turmeric to get green wavelength, the researchers used carbon nanoparticles made from pomegranate extract. “We could get white emission, though it is not as white as when we use turmeric. It’s slightly bluish but well within the white zone,” says Prof. Mishra. “It is an attractive to use a single plant source to create white light emission.” The principle by which the pomegranate extract and carbon nanoparticles made from the extract is the same as in the case when pomegranate and turmeric extracts were used. The results were published in the Journal of Materials Chemistry C.

Though this natural mixture of dyes can be used in a wide variety of applications such as tunable laser, LEDs, white light display, much work needs to be done in terms of photostability and chemical stability before it becomes ready for translation. Biosystems have an inherent tendency to breakdown and so this has to be addressed.

Comments

Popular posts from this blog

NGT terminates chairmen of pollution control boards in 10 states (downtoearth,)

Cracking the whip on 10 State Pollution Control Boards (SPCBs) for ad-hoc appointments, the National Green Tribunal has ordered the termination of Chairpersons of these regulatory authorities. The concerned states are Himachal Pradesh, Sikkim, Tamil Nadu, Uttarakhand, Kerala, Rajasthan, Telangana, Haryana, Maharashtra and Manipur. The order was given last week by the principal bench of the NGT, chaired by Justice Swatanter Kumar. The recent order of June 8, 2017, comes as a follow-up to an NGT judgment given in August 2016. In that judgment, the NGT had issued directions on appointments of Chairmen and Member Secretaries of the SPCBs, emphasising on crucial roles they have in pollution control and abatement. It then specified required qualifications as well as tenure of the authorities. States were required to act on the orders within three months and frame Rules for appointment [See Box: Highlights of the NGT judgment of 2016 on criteria for SPCB chairperson appointment]. Having

High dose of Vitamin C and B3 can kill colon cancer cells: study (downtoearth)

In a first, a team of researchers has found that high doses of Vitamin C and niacin or Vitamin B3 can kill cancer stem cells. A study published in Cell Biology International showed the opposing effects of low and high dose of vitamin C and vitamin B3 on colon cancer stem cells. Led by Bipasha Bose and Sudheer Shenoy, the team found that while low doses (5-25 micromolar) of Vitamin C and B3 proliferate colon cancer stem cells, high doses (100 to 1,000 micromolar) killed cancer stem cells. Such high doses of vitamins can only be achieved through intravenous injections in colon cancer patients. The third leading cause of cancer deaths worldwide, colon cancer can be prevented by an intake of dietary fibre and lifestyle changes. While the next step of the researchers is to delineate the mechanisms involved in such opposing effects, they also hope to establish a therapeutic dose of Vitamin C and B3 for colon cancer stem cell therapy. “If the therapeutic dose gets validated under in vivo

SC asks Centre to strike a balance on Rohingya issue (.hindu)

Supreme Court orally indicates that the government should not deport Rohingya “now” as the Centre prevails over it to not record any such views in its formal order, citing “international ramifications”. The Supreme Court on Friday came close to ordering the government not to deport the Rohingya. It finally settled on merely observing that a balance should be struck between humanitarian concern for the community and the country's national security and economic interests. The court was hearing a bunch of petitions, one filed by persons within the Rohingya community, against a proposed move to deport over 40,000 Rohingya refugees. A three-judge Bench, led by Chief Justice of India Dipak Misra, began by orally indicating that the government should not deport Rohingya “now”, but the government prevailed on the court to not pass any formal order, citing “international ramifications”. With this, the status quo continues even though the court gave the community liberty to approach i