Skip to main content

Reversing drug resistance made possible (hindu)

Drug-resistant E. coli become sensitive to antibiotics when H2S synthesis is inhibited

Indian researchers have unravelled the mechanism by which hydrogen sulphide (H2S) gas produced by bacteria protects them from antibiotics and plays a key role in helping bacteria develop drug resistance. And by blocking/disabling the enzyme that triggers the biosynthesis of hydrogen sulphide in bacteria, the researchers from Bengaluru’s Indian Institute of Science (IISc) and Indian Institute of Science Education and Research (IISER) Pune, have been able to reverse antibiotic resistance in E. coli bacteria; E. coli bacteria were isolated from patients suffering from urinary tract infection. The results were published in the journal Chemical Science.

Antibiotics kill by increasing the levels of reactive oxygen species (oxidative stress) inside bacterial cells. So any mechanism that detoxifies or counters reactive oxygen species generated by antibiotics will reduce the efficacy of antibiotics. “Hydrogen sulphide does this to nullify the effect of antibiotics,” says Dr. Amit Singh from the Department of Microbiology and Cell Biology at IISc and one of the corresponding authors of the paper. “When bacteria face reactive oxygen species a protective mechanism in the bacteria kicks in and more hydrogen sulphide is produced.” Hydrogen sulphide successfully counters reactive oxygen species and reduces the efficacy of antibiotics.

The researchers carried out simple experiments to establish this. They first ascertained that regardless of the mode of action of antibiotics, the drugs uniformly induce reactive oxygen species formation inside E. coli bacteria. Then to test if increased levels of hydrogen sulphide gas inside bacteria counter reactive oxygen species produced upon treatment with antibiotics, a small molecule that produces hydrogen sulphide in a controlled manner inside the bacteria was used. “Hydrogen sulphide released by the molecule was able to counter reactive oxygen species and reduce the ability of antibiotics to kill bacteria,” says Dr. Singh.

The small molecule was synthesised by a team led by Prof. Harinath Chakrapani from the Department of Chemistry, IISER, Pune; he is one of the corresponding authors of the paper. “We designed the small molecule keeping in mind that synthesis should be easy, efficiency in producing hydrogen sulphide should be high and the molecule should release hydrogen sulphide only inside bacteria and not mammalian cells,” says Vinayak S. Khodade from the Department of Chemistry, IISER, Pune and one of the authors of the paper who contributed equally like the first author. The researchers were able to selectively increase hydrogen sulphide levels inside a wide variety of bacteria.

To reconfirm hydrogen sulphide’s role in countering reactive oxygen species, the team took multidrug-resistant, pathogenic strains of E. coli from patients suffering from urinary tract infection and measured the hydrogen sulphide levels in these strains. “We found the drug-resistant strains were naturally producing more hydrogen sulphide compared with drug-sensitive E. coli,” says Prashant Shukla from the Department of Microbiology and Cell Biology at IISc and the first author of the paper. So the team used a chemical compound that inhibits an enzyme responsible for hydrogen sulphide production. “There was nearly 50% reduction in drug-resistance when hydrogen sulphide production was blocked,” Dr. Singh says.

“Bacteria that are genetically resistant to antibiotics actually become sensitive to antibiotics when hydrogen sulphide synthesis is inhibited,” says Prof. Chakrapani. The multidrug-resistant E. coli regained its ability to survive antibiotics when hydrogen sulphide was once again supplied by introducing the small molecule synthesised by Prof. Chakrapani.

“As a result of our study, we have a found new mechanism to develop a new class of drug candidates that specifically target multidrug-resistant bacteria,” says Prof. Chakrapani. The researchers already have a few inhibitors that seem capable of blocking hydrogen sulphide production. But efforts are on to develop a library of inhibitors to increase the chances of success.

How H2S acts

The researchers identified that E. coli has two modes of respiration involving two different enzymes. The hydrogen sulphide gas produced shuts down E. coli’s aerobic respiration by targeting the main enzyme (cytochrome bo oxidase (CyoA)) responsible for it. E. coli then switches over to an alternative mode of respiration by relying on a different enzyme — cytochrome bd oxidase (Cydb). Besides enabling respiration, the Cydb enzyme detoxifies the reactive oxygen species produced by antibiotics and blunts the action of antibiotics.

“So we found that hydrogen sulphide activates the Cydb enzyme, which, in turn, is responsible for increasing resistance towards antibiotics,” says Dr. Singh. “If we have a drug-like molecule(s) that blocks hydrogen sulphide production and inhibits Cydb enzyme activity then the combination will be highly lethal against multidrug-resistant bacteria.”

This combination can also be used along with antibiotics to effectively treat difficult-to-cure bacterial infections.

The link between hydrogen sulphide and Cydb enzyme in the emergence of drug resistance is another key finding of the study.

Comments

Popular posts from this blog

NGT terminates chairmen of pollution control boards in 10 states (downtoearth,)

Cracking the whip on 10 State Pollution Control Boards (SPCBs) for ad-hoc appointments, the National Green Tribunal has ordered the termination of Chairpersons of these regulatory authorities. The concerned states are Himachal Pradesh, Sikkim, Tamil Nadu, Uttarakhand, Kerala, Rajasthan, Telangana, Haryana, Maharashtra and Manipur. The order was given last week by the principal bench of the NGT, chaired by Justice Swatanter Kumar. The recent order of June 8, 2017, comes as a follow-up to an NGT judgment given in August 2016. In that judgment, the NGT had issued directions on appointments of Chairmen and Member Secretaries of the SPCBs, emphasising on crucial roles they have in pollution control and abatement. It then specified required qualifications as well as tenure of the authorities. States were required to act on the orders within three months and frame Rules for appointment [See Box: Highlights of the NGT judgment of 2016 on criteria for SPCB chairperson appointment]. Having

High dose of Vitamin C and B3 can kill colon cancer cells: study (downtoearth)

In a first, a team of researchers has found that high doses of Vitamin C and niacin or Vitamin B3 can kill cancer stem cells. A study published in Cell Biology International showed the opposing effects of low and high dose of vitamin C and vitamin B3 on colon cancer stem cells. Led by Bipasha Bose and Sudheer Shenoy, the team found that while low doses (5-25 micromolar) of Vitamin C and B3 proliferate colon cancer stem cells, high doses (100 to 1,000 micromolar) killed cancer stem cells. Such high doses of vitamins can only be achieved through intravenous injections in colon cancer patients. The third leading cause of cancer deaths worldwide, colon cancer can be prevented by an intake of dietary fibre and lifestyle changes. While the next step of the researchers is to delineate the mechanisms involved in such opposing effects, they also hope to establish a therapeutic dose of Vitamin C and B3 for colon cancer stem cell therapy. “If the therapeutic dose gets validated under in vivo

SC asks Centre to strike a balance on Rohingya issue (.hindu)

Supreme Court orally indicates that the government should not deport Rohingya “now” as the Centre prevails over it to not record any such views in its formal order, citing “international ramifications”. The Supreme Court on Friday came close to ordering the government not to deport the Rohingya. It finally settled on merely observing that a balance should be struck between humanitarian concern for the community and the country's national security and economic interests. The court was hearing a bunch of petitions, one filed by persons within the Rohingya community, against a proposed move to deport over 40,000 Rohingya refugees. A three-judge Bench, led by Chief Justice of India Dipak Misra, began by orally indicating that the government should not deport Rohingya “now”, but the government prevailed on the court to not pass any formal order, citing “international ramifications”. With this, the status quo continues even though the court gave the community liberty to approach i