Skip to main content

IISc works to make a common antibiotic more effective against TB (hindu)

Augmentin combines an antibiotic and an inhibitor, thus being effective against TB

Bacteria develop resistance against a drug only when they are exposed to it or when the drug is misused. But now, a team of researchers from India has found whether and how drug resistance can develop against a candidate drug called Augmentin even before the drug is approved for treating patients with drug-resistant TB. Augmentin is currently undergoing clinical trials in patients with drug-resistant TB; it is already being used for common bacterial infections.

Besides deciphering the mechanism by which TB bacteria can develop resistance against Augmentin, the researchers have found ways of overcoming this potential resistance mechanism, thereby making Augmentin a potentially powerful drug to treat both multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB).

The beta-lactam class of antibiotics such as penicillin, ampicillin and amoxicillin is one of the most widely used class of antibacterial drugs. Despite its ability to kill several types of bacteria, the beta-lactam antibiotics have never been used against TB bacteria. This is because TB bacteria are naturally resistant to this class. TB bacteria inherently produce an enzyme called beta-lactamase which breaks down beta-lactam class of antibiotics (through hydrolysis) and makes the drug ineffective against TB disease.

Making of Augmentin

One of the strategies of getting around using the beta-lactam class of antibiotics is developing an inhibitor against beta-lactamase enzyme. Clavulanic acid is one such inhibitor, which blocks the beta-lactamase enzyme. Augmentin, which is a combination of a beta-lactam antibiotic (amoxicillin) and beta-lactamase inhibitor (clavulanic acid), can thus be an effective drug against TB bacteria.

“Till now no one knew the exact mechanism of how the combination of beta-lactam and beta-lactamase inhibitor was killing TB bacteria and how resistance against the combination can emerge in future,” says Dr. Amit Singh from the Centre for Infectious Disease Research at the Indian Institute of Science (IISc), Bengaluru, and the corresponding author of the paper published in the journal eLife. “Our study was able to provide insights into how resistance against Augmentin can emerge.”

The team used integrated experimental technology and computer tools to understand the mechanism by which resistance against Augmentin can set in.

Deciphering the mechanism

The first thing that the researchers asked was how the TB bacterium senses the presence of the drug combination in and around it. “We found the bacterium when exposed to this drug combination changes its metabolism and respiration, which led to the production of sub-lethal amount of reactive oxygen species (ROS). The ROS acts as a danger signal for the bacteria to mount a defence mechanism against Augmentin,” Dr. Singh explains.

The defence mechanism is through a protein called WhiB4, which is normally present in bacteria and is responsible for regulating the production of beta-lactamase enzyme. When the WhiB4 protein senses the ROS signal, it produces large amounts of beta-lactamase enzyme in the TB bacteria. “This could be one method by which the bacteria can become resistant to Augmentin,” Dr. Singh says.

Besides producing beta-lactamase enzyme, the WhiB4 protein also controls the production of an antioxidant molecule called mycothiol. The main role of mycothiol is to reduce the excessive increase in ROS so that ROS level is kept in balance; excessive ROS can kill bacteria by damaging proteins, DNA, and cell wall lipids.

“The WhiB4 protein can detect the ROS signal produced by antibiotics and direct the production of both beta-lactamase and mycothiol, which work together and contribute to bacterium’s ability to resist augmentin,” says Saurabh Mishra from the Centre for Infectious Disease Research at IISc and the first author of the paper.

Making Augmentin powerful

The researchers demonstrated that it is possible to kill MDR-TB and XDR-TB by simply changing the levels of the regulator, WhiB4, and/or increasing the ROS levels inside the bacteria. “When we knocked out mycothiol production, the level of ROS increased inside the bacteria and ultimately resulted in efficient killing of drug-resistant TB bacteria,” he says.

There are certain antibiotics (such as clofazimine) that work by increasing the ROS levels inside bacteria. The researchers are currently testing if using such antibiotics along with Augmentin can efficiently kill drug-resistant TB bacteria. Augmentin and clofazimine antibiotics can together elevate the production of ROS. The excessive ROS inside the bacteria can then kill all forms of drug-resistant TB bacteria.


Popular posts from this blog

SC asks Centre to strike a balance on Rohingya issue (.hindu)

Supreme Court orally indicates that the government should not deport Rohingya “now” as the Centre prevails over it to not record any such views in its formal order, citing “international ramifications”.

The Supreme Court on Friday came close to ordering the government not to deport the Rohingya.

It finally settled on merely observing that a balance should be struck between humanitarian concern for the community and the country's national security and economic interests.

The court was hearing a bunch of petitions, one filed by persons within the Rohingya community, against a proposed move to deport over 40,000 Rohingya refugees. A three-judge Bench, led by Chief Justice of India Dipak Misra, began by orally indicating that the government should not deport Rohingya “now”, but the government prevailed on the court to not pass any formal order, citing “international ramifications”. With this, the status quo continues even though the court gave the community liberty to approach it in …

Cloud seeding

Demonstrating the function of the flare rack that carries silver iodide for cloud-seeding through an aircraft. 
Water is essential for life on the earth. Precipitation from the skies is the only source for it. India and the rest of Asia are dependent on the monsoons for rains. While the South West Monsoon is the main source for India as a whole, Tamil Nadu and coastal areas of South Andhra Pradesh get the benefit of the North East Monsoon, which is just a less dependable beat on the reversal of the South West Monsoon winds.

India’s criminal wastage: over 10 million works under MGNREGA incomplete or abandoned (hindu)

In the last three and half years, the rate of work completion under the Mahatma Gandhi National Rural Employment Guarantee Act (MGNREGA) has drastically declined, leading to wastage of public money and leaving villages more prone to drought. This could also be a reason for people moving out of the programme.

At a time when more than one-third of India’s districts are reeling under a drought-like situation due to deficit rainfall, here comes another bad news. The works started under the MGNREGA—close to 80 per cent related to water conservation, irrigation and land development—are increasingly not being completed or in practice, abandoned.

Going by the data (as on October 12) in the Ministry of Rural Development’s website, which tracks progress of MGNREGA through a comprehensive MIS, 10.4 million works have not been completed since April 2014. In the last three and half years, 39.7 million works were started under the programme. Going by the stipulation under the programme, close to 7…